Tycho Brahe, Johannes Kepler and Planetary Motion





The interactive transcript could not be loaded.


Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Apr 28, 2013

In astronomy, Kepler's laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.

Most planetary orbits are almost circles, and careful observation and calculation is required in order to establish that they are actually ellipses. Calculations of the orbit of the planet Mars first indicated to Johannes Kepler its elliptical shape, and he inferred that other heavenly bodies, including those farther away from the Sun, also have elliptical orbits.

Kepler's work improved the heliocentric theory of Nicolaus Copernicus, explaining how the planets' speeds varied, and using elliptical orbits rather than circular orbits with epicycles.

Isaac Newton showed in 1687 that relationships like Kepler's would apply in the solar system to a good approximation, as consequences of his own laws of motion and law of universal gravitation.

Kepler's laws are part of the foundation of modern astronomy and physics.

Tycho Brahe (14 December 1546 – 24 October 1601), born Tycho Ottesen Brahe, was a Danish nobleman known for his accurate and comprehensive astronomical and planetary observations. He was born in Scania, then part of Denmark, now part of modern-day Sweden. Tycho was well known in his lifetime as an astronomer, astrologer and alchemist, and has been described more recently as "the first competent mind in modern astronomy to feel ardently the passion for exact empirical facts.

Johannes Kepler (December 27, 1571 – November 15, 1630) was a German mathematician, astronomer, and astrologer. A key figure in the 17th century scientific revolution, he is best known for his laws of planetary motion, based on his works Astronomia nova, Harmonices Mundi, and Epitome of Copernican Astronomy. These works also provided one of the foundations for Isaac Newton's theory of universal gravitation.


When autoplay is enabled, a suggested video will automatically play next.

Up next

to add this to Watch Later

Add to

Loading playlists...