Upload

Loading...

14. Quantifying Uncertainty and Risk

20,738

Loading...

Loading...

Transcript

The interactive transcript could not be loaded.

Loading...

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Uploaded on Apr 1, 2011

Financial Theory (ECON 251)

Until now, the models we've used in this course have focused on the case where everyone can perfectly forecast future economic conditions. Clearly, to understand financial markets, we have to incorporate uncertainty into these models. The first half of this lecture continues reviewing the key statistical concepts that we'll need to be able to think seriously about uncertainty, including expectation, variance, and covariance. We apply these concepts to show how diversification can reduce risk exposure. Next we show how expectations can be iterated through time to rapidly compute conditional expectations: if you think the Yankees have a 60% chance of winning any game against the Dodgers, what are the odds the Yankees will win a seven game series once they are up 2 games to 1? Finally we allow the interest rate, the most important variable in the economy according to Irving Fisher, to be uncertain. We ask whether interest rate uncertainty tends to make a dollar in the distant future more valuable or less valuable.

00:00 - Chapter 1. Expectation, Variance, and Covariance
19:06 - Chapter 2. Diversification and Risk Exposure
33:54 - Chapter 3. Conditional Expectation
53:39 - Chapter 4. Uncertainty in Interest Rates

Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses

This course was recorded in Fall 2009.

  • Category

  • License

    • Standard YouTube License

All Comments

Comments are disabled for this video.
When autoplay is enabled, a suggested video will automatically play next.

Up Next


Sign in to add this to Watch Later

Add to