Tom Augspurger: Pandas: .head() to .tail()





Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Aug 5, 2015

PyData Seattle 2015
Pandas is an extremely powerful library for data analysis. With that power comes complexity. This tutorial will focus on the core features of pandas, which handle most data munging tasks. The emphasis will be on practical applications, illustrating solutions to common problems using real-world data.

The motivation of this tutorial mirrors that of pandas itself: practicality. A brief discussion on the problems pandas tries to solve will help frame the rest of the tutorial. We'll aim for an intuitive understanding of each new method and data structure. This will help keep us from getting overwhelmed by the options available as we expand our data munging toolkit. The start of the talk will focus on the core operations of

Selecting and Indexing
Reshaping and Tidy Data
Grouped operations
Merging and Joining
These operations can be combined into "pandastic" method chains that flow seamlessly from data IO to analysis.

Time permitting we'll look at some of the more specialized areas of pandas including Categoricals, time-series analysis, Hierarchical Indexes, chunked / out of core processing, and data pipelines.

Learning to use a library the size of pandas is a huge commitment. What's more, your goal is rarely achieved just with pandas. Rather, pandas gets you to the point where you can begin your interesting analysis. We'll build the foundation to quickly get you past the data munging, to the analysis.

- slides: http://www.slideshare.net/PyData/pand...
- Github repo: https://github.com/tomaugspurger/pyda...
- nbviewer link to notebooks: http://nbviewer.ipython.org/github/To...

Comments are disabled for this video.
When autoplay is enabled, a suggested video will automatically play next.

Up next

to add this to Watch Later

Add to

Loading playlists...