Loading...

#JeSuisCharlie

Jonathan Ronen - Social Networks and Protest Participation: Evidence from 130 Million Twitter Users

341 views

Loading...

Loading...

Transcript

The interactive transcript could not be loaded.

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Jul 26, 2017

Description
Data mining social networks for evidence of political participation. A demonstration of python being used to data mine the twitter conversations around the #JeSuisCharlie hashtag, and analyzing it to learn about real world protest behavior.

Abstract
Pinning down the role of social ties in the decision to protest has been notoriously elusive, largely due to data limitations. The era of social media and its global use by protesters offers an unprecedented opportunity to observe real-time social ties and online behavior, though often without an attendant measure of real-world behavior. We collect data on Twitter activity during the 2015 Charlie Hebdo protest in Paris which, unusually, record real-world protest attendance and high-resolution network structure. We draw on a theory of participation in which protest decisions depend on exposure to others' intentions, and network position determines exposure. Our findings are strong and consistent with this theory, showing that, relative to comparable Twitter users, protesters are significantly more connected to one another via direct, indirect, triadic, and reciprocated ties. These results offer the first large-scale empirical support for the claim that social network structure has consequences for protest participation.

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

Comments are disabled for this video.
When autoplay is enabled, a suggested video will automatically play next.

Up next


to add this to Watch Later

Add to

Loading playlists...