Loading...

Self-Assembled Flexible Microlasers

848 views

Loading...

Loading...

Transcript

The interactive transcript could not be loaded.

Loading...

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Mar 9, 2012

Microlasers hit the headlines recently. Such devices are opening up new possibilities to study light-matter interactions and are central to enabling new technologies such as quantum computing and integrated photonic circuits. As with most micro- and nano-technologies there are 2 approaches to fabricating a microlaser: Bottom-up or top-down. The top-down approach is based on established semicondutor processing and generally involves a creating a microcavity using a combination of epitaxial growth, lithography and etching, and this is the approached used to make the new famous 200 nm laser. Bottom-up fabrication involves growing the microcavity by controlled crystallisation of a nanostructure, but the size and shape of the cavity is not so controllable as with the top-down approach. Other more controllable bottom-up techniques involve encapsulating active materials in microdroplets but practical applications of these systems is hindered by other complexities, such as inherent instability of the droplets, for instance.

Now researchers from Nanyang Technological University have reported in Advanced Optical Materials an elegant technique for self-assembling microlasers from droplets. The cavity size is highly controllable and the lasers themselves show low losses. The team envisage using the system to probe deeper into light-matter interactions by constructing more complicated microlaser systems, such as arrays, couple cavities and cavities containing quantum dots or semiconducting nanowires.

Loading...

to add this to Watch Later

Add to

Loading playlists...