What is an amplicon? See examples of the different applications.





The interactive transcript could not be loaded.



Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Nov 13, 2013

An amplicon is a piece of DNA or RNA that is the source and/or product of natural or artificial amplification or replication events. It can be formed using various methods including polymerase chain reactions (PCR), ligase chain reactions (LCR), or natural gene duplication. In this context, "amplification" refers to the production of one or more copies of a genetic fragment or target sequence, specifically the amplicon. As the product of an amplification reaction, "Amplicon" is used interchangeably with common laboratory terms, such as PCR product.
Artificial amplification is used in research, forensics, and medicine for purposes that include detection and quantification of infectious agents, identification of human remains, and extracting genotypes from human hair.
Natural gene duplication is implicated in several forms of human cancer including primary mediastinal B cell lymphoma and Hodgkin's lymphoma. Amplicons in this context can refer both to sections of chromosomal DNA that have been excised, amplified, and reinserted elsewhere in the genome, and to extrachromasomal DNA known as double minutes, each of which can be composed of one or more genes. Amplification of the genes encoded by these amplicons generally increases transcription of those genes and ultimately the volume of associated proteins.

Amplicons in general are direct repeat (head-to-tail) or inverted repeat (head-to-head or tail-to-tail) genetic sequences, and can be either linear or circular in structure. Circular amplicons consist of imperfect inverted duplications annealed into a circle and are thought to arise from precursor linear amplicons.
During artificial amplification, amplicon length is dictated by the experimental goals.

Analysis of amplicons has been made possible by the development of amplification methods such as PCR, and increasingly by cheaper and more high-throughput technologies for DNA sequencing or next-generation sequencing, such as Ion semiconductor sequencing, popularly referred to as the brand of the developer, Ion Torrent.
DNA sequencing technologies such as next-generation sequencing have made it possible to study amplicons in genome biology and genetics, including cancer genetics research, phylogenetic research, and human genetics.
Irrespective of the approach used to amplify the amplicons, some technique must be used to quantitate the amplified product. Generally, these techniques incorporate a capture step and a detection step, although how these steps are incorporated depends on the individual assay.
Examples include the Amplicor HIV-1 Monitor Assay (RT-PCR), which has the capacity to recognize HIV in plasma, the HIV-1 QT (NASBA), which is used to measure plasma viral load by amplifying a segment of the HIV RNA, and Transcription Mediated Amplification, which employs a hybridization protection assay to distinguish Chlamydia trachomatis infections. Various detection and capture steps are involved in each approach to assess the amplification product, or amplicon.

PCR can be used to determine sex from a human DNA sample. The loci of Alu element insertion is selected, amplified and evaluated in terms of size of the fragment. The sex assay utilizes AluSTXa for the X chromosome, AluSTYa for the Y chromosome, or both AluSTXa and AluSTYa, to reduce the possibility of error to a negligible quantity. The inserted chromosome yields a large fragment when the homologous region is amplified. The males are distinguished as having two DNA amplicons present, while females have only a single amplicon. The kit adapted for carrying out the method includes a pair of primers to amplify the locus and optionally polymerase chain reaction reagents.
LCR can be used to diagnose tuberculosis. The sequence containing protein antigen B is targeted by four oligonucleotide primers -- two for the sense strand, and two for the antisense strand. The primers bind adjacent to one another, forming a segment of double stranded DNA that once separated, can serve as a target for future rounds of replication. In this instance, the product can be detected via the microparticle enzyme immunoassay (MEIA).

  • Category

  • License

    • Standard YouTube License


When autoplay is enabled, a suggested video will automatically play next.

Up next

to add this to Watch Later

Add to

Loading playlists...