1. Lecture 1 - Programing Basics

  2. Lecture 2 - Introduction to Pointers

  3. Lecture 3 - Pointers And Arrays

  4. Lecture 4 - External Functions and Argument Passing

  5. Lecture 5 - Representation of Numbers

  6. Lecture 6 - Numerical Error

  7. Lecture 7 - Error Propagation and Stability

  8. Lecture 8 - Polynomial Interpolation-1

  9. Lecture 9 - Polynomial Interpolation-2

  10. Lecture 10 - Error In Interpolation Polynomial

  11. Lecture 11 - Polynomial Interpolation

  12. Lecture 12 - Cubic Spline Interpolation

  13. Lecture 13 - Data Fitting : Linear Fit

  14. Lecture 14 - Data Fitting : Linear Fit

  15. Lecture 15 - Data Fitting : Non Linear Fit

  16. Lecture 16 - Matrix Elimation and Solution

  17. Lecture 17 - Solution To Linear Equations

  18. Lecture 18 - Matrix Elimination

  19. Lecture 19 - Eigen Values of A Matrix

  20. Lecture 20 - Eigen Values And Eigen Vectors

  21. Lecture 21 - Solving NonLinear Equations

  22. Lecture 22 - Solving NonLinear Equations Newton

  23. Lecture 23 - Methods For Solving NonLinear Equations

  24. Lecture 24 - System of NonLinear Equations

  25. Lecture 25 - Numerical Derivations

  26. Lecture 26 - High order Derivatives From Difference Formula

  27. Lecture 27 - Numerical Integration - Basic Rules

  28. Lecture 28 - Comparison of Different Basic Rules

  29. Lecture 29 - Gaussian Rules

  30. Lecture 30 - Comparison of Gaussian Rules

  31. Lecture 31 - Solving Ordinary Differential Equations

  32. Lecture 32-Solving ordinary differential equations

  33. Lecture 33 - Adaptive step size Runge Kutta scheme

  34. Lecture 34 - Partial Differential Equations

  35. Lecture 35 - Explicit and Implicit Methods

  36. Lecture - 36 The Crank - Nicholson Scheme For Two Spatial

  37. Lecture 37 - Fourier Transforms

  38. Lecture 38 Fast Fourier Transforms