Loading...

Subutai Ahmad, VP of Research, Numenta @ MLconf SF

947 views

Loading...

Loading...

Transcript

The interactive transcript could not be loaded.

Loading...

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Nov 17, 2015

Real-time Anomaly Detection for Real-time Data Needs: Much of the world’s data is becoming streaming, time-series data, where anomalies give significant information in often-critical situations. Examples abound in domains such as finance, IT, security, medical, and energy. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to process data in real-time, not batches, and learn while simultaneously making predictions. Are there algorithms up for the challenge? Which are the most capable? The Numenta Anomaly Detection Benchmark (NAB) attempts to provide a controlled and repeatable environment of open-source tools to test and measure anomaly detection algorithms on streaming data. The perfect detector would detect all anomalies as soon as possible, trigger no false alarms, work with real-world time-series data across a variety of domains, and automatically adapt to changing statistics. These characteristics are formalized in NAB, using a custom scoring algorithm to evaluate the detectors on a benchmark dataset with labeled, real-world time-series data. We present these components, and describe the end-to-end scoring process. We give results and analyses for several algorithms to illustrate NAB in action. The goal for NAB is to provide a standard, open-source framework for which we can compare and evaluate different algorithms for detecting anomalies in streaming data.

Loading...

When autoplay is enabled, a suggested video will automatically play next.

Up next


to add this to Watch Later

Add to

Loading playlists...