GPU-efficient recursive filtering and summed-area tables (SIGGRAPH Asia 2011)





The interactive transcript could not be loaded.



Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Uploaded on Sep 30, 2011

See project page at http://www.impa.br/~diego/projects/Ne... and http://research.microsoft.com/~hoppe/... .

Video accompanying the technical paper:

Diego Nehab, André Maximo, Rodolfo Lima, Hugues Hoppe. GPU-efficient recursive filtering and summed-area tables. ACM Trans. on Graphics (Proc. SIGGRAPH Asia 2011).


Image processing operations like blurring, inverse convolution, and summed-area tables are often computed efficiently as a sequence of 1D recursive filters. While much research has explored parallel recursive filtering, prior techniques do not optimize across the entire filter sequence. Typically, a separate filter (or often a causal-anticausal filter pair) is required in each dimension. Computing these filter passes independently results in significant traffic to global memory, creating a bottleneck in GPU systems. We present a new algorithmic framework for parallel evaluation. It partitions the image into 2D blocks, with a small band of additional data buffered along each block perimeter. We show that these perimeter bands are sufficient to accumulate the effects of the successive filters. A remarkable result is that the image data is read only twice and written just once, independent of image size, and thus total memory bandwidth is reduced even compared to the traditional serial algorithm. We demonstrate significant speedups in GPU computation.


When autoplay is enabled, a suggested video will automatically play next.

Up next

to add this to Watch Later

Add to

Loading playlists...