Loading...

Dan Garrette: Exploiting Universal Grammatical Properties to Induce CCG Grammars

605 views

Loading...

Loading...

Transcript

The interactive transcript could not be loaded.

Loading...

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Sep 7, 2016

Dan Garrette

Title: Exploiting Universal Grammatical Properties to Induce CCG Grammars

Abstract: Learning NLP models from weak forms of supervision has become increasingly important as the field moves toward applications in new languages and domains. Much of the existing work in this area has focused on designing learning approaches that are able to make use of small amounts of human-generated data. In this talk, I will present work on a complementary form of inductive bias: universal, cross-lingual principles of how grammars function. I will develop these intuitions with a series of increasingly complex models based in the Combinatory Categorial Grammar (CCG) formalism: first, a supertagging model that biases towards associative adjacent-category relationships; second, a parsing model that biases toward simpler grammatical analyses; and finally, a novel parsing model, with accompanying learning procedure, that is able to exploit both of these biases by parameterizing the relationships between each constituent label and its supertag context to find trees with a better global coherence. We model grammar with CCG because the structured, logic-backed nature of CCG categories and the use of a small universal set of constituent combination rules are ideally suited to encoding as priors, and we train our models within a Bayesian setting that combines these prior beliefs about how natural languages function with the empirical statistics gleaned from large amounts of raw text. Experiments with each of these models show that when training from only partial type-level supervision and a corpus of unannotated text, employing these universal properties as soft constraints yields empirically better models. Additional gains are obtained by further shaping the priors with corpus-specific information that is estimated automatically from the tag dictionary and raw text.

Loading...


to add this to Watch Later

Add to

Loading playlists...