TTIC Distinguished Lecture Series - Geoffrey Hinton





The interactive transcript could not be loaded.



Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Nov 6, 2014

Title: Dark Knowledge

Abstract: A simple way to improve classification performance is to average the predictions of a large ensemble of different classifiers. This is great for winning competitions but requires too much computation at test time for practical applications such as speech recognition. In a widely ignored paper in 2006, Caruana and his collaborators showed that the knowledge in the ensemble could be transferred to a single, efficient model by training the single model to mimic the log probabilities of the ensemble average. This technique works because most of the knowledge in the learned ensemble is in the relative probabilities of extremely improbable wrong answers. For example, the ensemble may give a BMW a probability of one in a billion of being a garbage truck but this is still far greater (in the log domain) than its probability of being a carrot. This "dark knowledge", which is practically invisible in the class probabilities, defines a similarity metric over the classes that makes it much easier to learn a good classifier. I will describe a new variation of this technique called "distillation" and will show some surprising examples in which good classifiers over all of the classes can be learned from data in which some of the classes are entirely absent, provided the targets come from an ensemble that has been trained on all of the classes. I will also show how this technique can be used to improve a state-of-the-art acoustic model and will discuss its application to learning large sets of specialist models without overfitting. This is joint work with Oriol Vinyals and Jeff Dean.

Bio: Geoffrey Hinton received his BA in experimental psychology from Cambridge in 1970 and his PhD in Artificial Intelligence from Edinburgh in 1978. He did postdoctoral work at Sussex University and the University of California San Diego and spent five years as a faculty member in the Computer Science department at Carnegie-Mellon University. He then became a fellow of the Canadian Institute for Advanced Research and moved to the Department of Computer Science at the University of Toronto. He spent three years from 1998 until 2001 setting up the Gatsby Computational Neuroscience Unit at University College London and then returned to the University of Toronto where he is a University Professor. He is the director of the program on "Neural Computation and Adaptive Perception" which is funded by the Canadian Institute for Advanced Research.

Geoffrey Hinton is a fellow of the Royal Society, the Royal Society of Canada, and the Association for the Advancement of Artificial Intelligence. He is an honorary foreign member of the American Academy of Arts and Sciences, and a former president of the Cognitive Science Society. He has received honorary doctorates from the University of Edinburgh and the University of Sussex. He was awarded the first David E. Rumelhart prize (2001), the IJCAI award for research excellence (2005), the IEEE Neural Network Pioneer award (1998), the ITAC/NSERC award for contributions to information technology (1992) the Killam prize for Engineering (2012) and the NSERC Herzberg Gold Medal (2010) which is Canada's top award in Science and Engineering.

Geoffrey Hinton designs machine learning algorithms. His aim is to discover a learning procedure that is efficient at finding complex structure in large, high-dimensional datasets and to show that this is how the brain learns to see. He was one of the researchers who introduced the back-propagation algorithm that has been widely used for practical applications. His other contributions to neural network research include Boltzmann machines, distributed representations, time-delay neural nets, mixtures of experts, variational learning, products of experts and deep belief nets. His current main interest is in unsupervised learning procedures for multi-layer neural networks with rich sensory input.

Comments are disabled for this video.
When autoplay is enabled, a suggested video will automatically play next.

Up next

to add this to Watch Later

Add to

Loading playlists...