Loading...

#34 BB 350 Photosynthesis - Kevin Ahern's Biochemistry Online

5,333 views

Loading...

Loading...

Transcript

The interactive transcript could not be loaded.

Loading...

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Jun 5, 2012

1. Contact me at kgahern@davincipress.com / Friend me on Facebook (kevin.g.ahern)
2. Download my free biochemistry book at http://biochem.science.oregonstate.ed...
3. Take my free iTunes U course at https://itunes.apple.com/us/course/bi...
4. Check out my free book for pre-meds at http://biochem.science.oregonstate.ed...
5. Course video channel at http://www.youtube.com/user/oharow/vi...
6. Check out all of my free workshops at http://www.youtube.com/playlist?list=...
7. Check out my Metabolic Melodies at http://www.davincipress.com/metabmelo...
8. Take my courses for credit (wherever you live) via OSU's ecampus. For details, see http://ecampus.oregonstate.edu/soc/ec...
9. Course materials at http://oregonstate.edu/instruct/bb350

Lecture Highlights
1. LDLs are also called "bad cholesterol" because increased levels of them are correlated with increased risk of atherosclerosis (plugged arteries) and heart attack. HDLs, by contrast, are called "good cholesterol" because they help in scavenging cholesterol and LDLs from the bloodstream.

Highlights Photosynthesis

1. Photosynthesis is a process in plants and some bacteria that use energy from the light of the sun to synthesize glucose using carbon dioxide and water as starting reagents.
2. Photosynthesis occurs in plants in organelles called chloroplasts. The thylakoid disks of the chloroplast are the sites where the light reactions of photosynthesis and the stroma is the location of the dark reactions.
3. Molecules involved in the capture of light energy are known as the chlorophylls. These molecules contain a porphyrin ring (like hemoglobin) with a magnesium ion at the center (instead of the iron molecule found in hemoglobin).
4. In the light reactions of photosynthesis, 1) electrons are removed from water (producing oxygen); 2) ATP is produced by the process of photophosphorylation as electrons pass through the membrane of the thylakoids; and 3) NADPH is produced from NADP+ in the final reduction reaction. NADP+ is therefore the terminal electron carrier in photosynthesis.
5. There are two photosystems (I and II) that act together to produce the reactions of photosynthesis. Photosystem II is involved in the first set of reactions. Here electrons from the first porphyrin ring complex are excited by light. As these electrons are passed to the electron transport chain of the membrane, the ring extracts electrons from water, creating oxygen.
6. Movement of electrons through the electron transport chain in the thylakoid membrane causes protons to be pumped INTO the thylakoid. This creates a proton gradient (higher proton concentration in the thylakoid than the stroma). As protons move through the PTAS, ATP is generated from ADP (photophosphorylation).
7. Electrons released from photosystem II eventually reach photosystem I where they are excited by sunlight of a different wavelength. These newly excited electrons are passed to ferredoxin and ultimately to NADP+, creating NADPH, the final product of the light reactions.
8. Quinones are molecules that help carry electrons in the thylakoid membrane (and mitochondrial membrane too).
9. The dark reactions of photosynthesis are where the glucose is synthesized. Light reactions are the ones where the energy necessary for making glucose is stored up and the dark reactions as the ones that use energy from the light reactions to store that energy in another form - glucose.
10. The dark reactions of photosynthesis are also known as the Calvin cycle in honor of their discoverer, Melvin Calvin.
11. In the dark reactions, carbon dioxide is removed from by a process called fixation. Carbon dioxide is first covalently attached to ribulose1,5bisphosphate (Ru1,5BP) to form a six carbon intermediate that immediately breaks down to from two molecules of 3-phosphoglycerate (3-PG). This reaction is catalyzed by the enzyme with the acronym RuBisco.
12. 3-PG is an intermediate in glycolysis and gluconeogenesis. Phosphorylation and reduction of it leads to glyceraldehyde-3-phosphate (G3P).
13.The pathway described to this point is that taken by plants known as C3 plants, by virtue of the fact that the first molecule made after fixation of carbon dioxide has three carbons. Another group of plants, known as C4 plants, fixes carbon dioxide to PEP and forms a four carbon molecule, oxaloacetate. Ultimately, this four carbon molecule is decarboxylated in another part of the plant, releasing carbon dioxide once again. This newly released carbon dioxide enters the Calvin cycle.
14. When Rubisco encounters molecular oxygen instead of CO2, it catalyzes a reaction that breaks ribulose 1,5 bisphosphate into 3-PG and glyoxylate.

  • Category

  • License

    • Standard YouTube License

Loading...

When autoplay is enabled, a suggested video will automatically play next.

Up next


to add this to Watch Later

Add to

Loading playlists...