Loading...

DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving

33,747 views

Loading...

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on May 1, 2015

http://deepdriving.cs.princeton.edu

Today, there are two major paradigms for vision-based autonomous driving systems: mediated perception approaches that parse an entire scene to make a driving decision, and behavior reflex approaches that directly map an input image to a driving action by a regressor. In this paper, we propose a third paradigm: a direct perception based approach to estimate the affordance for driving. We propose to map an input image to a small number of key perception indicators that directly relate to the affordance of a road/traffic state for driving. Our representation provides a set of compact yet complete descriptions of the scene to enable a simple controller to drive autonomously. Falling in between the two extremes of mediated perception and behavior reflex, we argue that our direct perception representation provides the right level of abstraction. To demonstrate this, we train a deep Convolutional Neural Network (CNN) using 12 hours of human driving in a video game and show that our model can work well to drive a car in a very diverse set of virtual environments. Finally, we also train another CNN for car distance estimation on the KITTI dataset, results show that the direct perception approach can generalize well to real driving images.

Loading...

When autoplay is enabled, a suggested video will automatically play next.

Up next


to add this to Watch Later

Add to

Loading playlists...