YouTube home #ProudToBe


Watch Movements: "How a Watch Works" 1949 Hamilton Watch Co 20min





The interactive transcript could not be loaded.



Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Jan 17, 2012

more at

"A simple demonstration of the basic design and operation of a watch, including stop-motion animation showing a watch being assembled from many parts."

NEW VERSION with improved video & sound:

Public domain film from the Library of Congress Prelinger Archive, slightly cropped to remove uneven edges, with the aspect ratio corrected, and mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and equalization.

A mechanical watch is a watch that uses a mechanical mechanism to measure the passage of time, as opposed to modern quartz watches which function electronically. It is driven by a spring (called a mainspring) which must be wound periodically. Its force is transmitted through a series of gears to power the balance wheel, a weighted wheel which oscillates back and forth at a constant rate. A device called an escapement releases the watch's wheels to move forward a small amount with each swing of the balance wheel, moving the watch's hands forward at a constant rate. This makes the 'ticking' sound characteristic of all mechanical watches. Mechanical watches evolved in Europe in the 17th century from spring powered clocks, which appeared in the 15th century.

Mechanical watches are not as accurate as modern quartz watches and are generally more expensive. They are now worn more for their aesthetic attributes, as a piece of jewellery and as a statement of one's personal style, than for their timekeeping ability. Mechanical movements can be repaired from scratch over centuries by able watchmakers...

The mechanical watch is a mature technology, and virtually all ordinary watch movements have the same parts and work the same way.

The spiral mainspring that powers the watch is inside a cylindrical barrel, with the outer end of the mainspring attached to the barrel. The barrel has gear teeth around the outside that turn the center wheel once per hour — this wheel has a shaft that goes through the dial. On the dial side the cannon pinion is attached with a friction fit (allowing it to slide when setting the hands) and the minute hand is attached to the cannon pinion. The cannon pinion drives a small 12-to-1 reduction gearing called the motion work that turns the hour wheel and hand once for every 12 revolutions of the minute hand.

The center wheel drives the third wheel, which in turn drives the fourth wheel. In watches with the seconds hand in a subsidiary seconds dial, usually located above the 6 o'clock position, the fourth wheel is geared to rotate once per minute, and the second hand is attached directly to the arbor of this wheel.

The fourth wheel also drives the escape wheel of the lever escapement. The escape wheel teeth alternately catch on two fingers called pallets on the arms of the pallet lever, which rocks back and forth. The other end of the lever has a fork which engages with an upright impulse pin on the balance wheel shaft. Each time the balance wheel swings through its center position, it unlocks the lever, which releases one tooth of the escape wheel, allowing the watch's wheels to advance by a fixed amount, moving the hands forward. As the escape wheel turns, its tooth pushes against the lever, which gives the balance wheel a brief push, keeping it swinging back and forth.

The balance wheel keeps time for the watch. It consists of a weighted wheel which rotates back and forth, which is returned toward its center position by a fine spiral spring, the balance spring. The mass of the balance wheel combines with the stiffness of the spring to precisely control the period of each swing or 'beat' of the wheel. Most watch balance wheels oscillate at 5, 6, 8, or 10 beats per second. In most watches there is a regulator lever on the balance spring which is used to adjust the rate of the watch. It has two curb pins which embrace the last turn of the spring, and can be slid up or down the spring to control its effective length.

A separate set of gears called the keyless work winds the mainspring when the crown is rotated, and when the crown is pulled out a short distance allow the hands to be turned to set the watch. The stem attached to the crown has a gear called the clutch or castle wheel, with two rings of teeth that project axially from the ends. When the stem is pushed in, the outer teeth turn the ratchet wheel on top of the mainspring barrel, which turns the shaft that the inner end of the mainspring is attached to, winding the mainspring tighter around the shaft. A springloaded pawl or click presses against the ratchet teeth, preventing the mainspring from unwinding. When the stem is pulled out, the inner teeth of the castle wheel engage with a gear which turns the minute wheel. When the crown is turned, the friction coupling of the cannon pinion allows the hands to be rotated...


When autoplay is enabled, a suggested video will automatically play next.

Up next

to add this to Watch Later

Add to

Loading playlists...