Loading...

A GPU Laplacian Solver for Diffusion Curves and Poisson Image Editing

2,399 views

Loading...

Loading...

Rating is available when the video has been rented.
This feature is not available right now. Please try again later.
Published on Sep 7, 2009

A GPU Laplacian Solver for Diffusion Curves and Poisson Image Editing.
Stefan Jeschke, David Cline, and Peter Wonka.
ACM Transactions on Graphics.
Proceedings of Siggraph Asia 2009.

We present a new Laplacian solver for minimal surfaces—surfaces
having a mean curvature of zero everywhere except at some fixed
(Dirichlet) boundary conditions. Our solution has two main contributions:
First, we provide a robust rasterization technique to transform
continuous boundary values (diffusion curves) to a discrete
domain. Second, we define a variable stencil size diffusion solver
that solves the minimal surface problem. We prove that the solver
converges to the right solution, and demonstrate that it is at least as
fast as commonly proposed multigrid solvers, but much simpler to
implement. It also works for arbitrary image resolutions, as well
as 8 bit data. We show examples of robust diffusion curve rendering
where our curve rasterization and diffusion solver eliminate
the strobing artifacts present in previous methods. We also show
results for real-time seamless cloning and stitching of large image
panoramas.

Loading...


to add this to Watch Later

Add to

Loading playlists...