Upload

Loading icon Loading...

This video is unavailable.

the Buckliball

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to like Massachusetts Institute of Technology (MIT)'s video.

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to dislike Massachusetts Institute of Technology (MIT)'s video.

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to add Massachusetts Institute of Technology (MIT)'s video to your playlist.

Published on Mar 26, 2012

MIT News - March 26, 2012

Motivated by the desire to determine the simplest 3-D structure that could take advantage of mechanical instability to collapse reversibly, a group of engineers at MIT and Harvard University were stymied — until one of them happened across a collapsible, spherical toy that resembled the structures they'd been exploring, but with a complex layout of 26 solid moving elements and 48 rotating hinges.

The toy inspired the engineers to create the "buckliball," a hollow, spherical object made of soft rubber containing no moving parts, but fashioned with 24 carefully spaced dimples. When the air is sucked out of a buckliball with a syringe, the thin ligaments forming columns between lateral dimples collapse. This is the engineering equivalent of applying equal load on all beams in a structure simultaneously to induce buckling, a phenomenon first studied by mathematician Leonhard Euler in 1757.

When the buckliball's thin ligaments buckle, the thicker ligaments forming rows between dimples undergo a series of movements the researchers refer to as a "cooperative buckling cascade." Some of the thick ligaments rotate clockwise, others counterclockwise — but all move simultaneously and harmoniously, turning the original circular dimples into vertical and horizontal ellipses in alternating patterns before closing them entirely. As a result, the buckliball morphs into a rhombicuboctahedron about half the size (46 percent) of the original sphere.

The researchers named their new structure for its use of buckling and its resemblance to buckyballs, spherical all-carbon molecules whose name was inspired by the geodesic domes created by architect-inventor Buckminster Fuller. The buckliball is the first morphable structure to incorporate buckling as a desirable engineering design element. The buckling process induces folding in portions of the sphere — similar to the way paper folds in origami — so the researchers place their buckliball in a larger framework of buckling-induced origami they call "buckligami."

Read more at MIT News: http://web.mit.edu/newsoffice/2012/bu...

Buckliball footage courtesy Jongmin Shim, Katia Bertoldi and Pedro Reis
Music by Broke for Free http://freemusicarchive.org/music/Bro...

Loading icon Loading...

Loading icon Loading...

Loading icon Loading...

Loading icon Loading...

Ratings have been disabled for this video.
Rating is available when the video has been rented.
This feature is not available right now. Please try again later.

Loading icon Loading...

Loading...
Working...
to add this to Watch Later

Add to