Upload

Loading icon Loading...

This video is unavailable.

I Will Derive!

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to like MindofMatthew's video.

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to dislike MindofMatthew's video.

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to add MindofMatthew's video to your playlist.

Uploaded on May 8, 2008

I parody of "I Will Survive" that I did with a couple of my friends for our Calculus and Physics classes.

Lyrics:

At first I was afraid, what could the answer be?
It said given this position find velocity.
So I tried to work it out, but I knew that I was wrong.
I struggled; I cried, "A problem shouldn't take this long!"
I tried to think, control my nerve.
It's evident that speed's tangential to that time-position curve.
This problem would be mine if I just knew that tangent line.
But what to do? Show me a sign!

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there's just one way to find that slope.
And so now I, I will derive.
Find the derivative of x position with respect to time.
It's as easy as can be, just have to take dx/dt.
I will derive, I will derive. Hey, hey!

And then I went ahead to the second part.
But as I looked at it I wasn't sure quite how to start.
It was asking for the time at which velocity
Was at a maximum, and I was thinking "Woe is me."
But then I thought, this much I know.
I've gotta find acceleration, set it equal to zero.
Now if I only knew what the function was for a.
I guess I'm gonna have to solve for it someway.

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there's just one way to find that slope.
And so now I, I will derive.
Find the derivative of velocity with respect to time.
It's as easy as can be, just have to take dv/dt.
I will derive, I will derive.

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there's just one way to find that slope.
And so now I, I will derive.
Find the derivative of x position with respect to time.
It's as easy as can be, just have to take dx/dt.
I will derive, I will derive, I will derive!

Loading icon Loading...

Loading icon Loading...

Loading icon Loading...

Loading icon Loading...

Ratings have been disabled for this video.
Rating is available when the video has been rented.
This feature is not available right now. Please try again later.

Loading icon Loading...

Loading...
Working...
to add this to Watch Later

Add to