Sign in to YouTube

  1. Newton Leibniz and Usain Bolt

  2. Introduction to Limits (HD)

  3. Introduction to Limits

  4. Limit Examples (part 1)

  5. Limit Examples (part 2)

  6. Limit Examples (part3)

  7. Limit Examples w/ brain malfunction on first prob (part 4)

  8. Squeeze Theorem

  9. Proof: lim (sin x)/x

  10. More Limits

  11. Epsilon Delta Limit Definition 1

  12. Epsilon Delta Limit Definition 2

  13. Calculus: Derivatives 1 (new HD version)

  14. Calculus: Derivatives 2 (new HD version)

  15. Calculus: Derivatives 2.5 (new HD version)

  16. Derivative Intuition Module

  17. Calculus: Derivatives 1

  18. Calculus: Derivatives 2

  19. Calculus: Derivatives 3

  20. The Chain Rule

  21. Chain Rule Examples

  22. Even More Chain Rule

  23. Product Rule

  24. Quotient Rule

  25. Derivatives (part 9)

  26. Proof: d/dx(x^n)

  27. Proof: d/dx(sqrt(x))

  28. Proof: d/dx(ln x) = 1/x

  29. Proof: d/dx(e^x) = e^x

  30. Proofs of Derivatives of Ln(x) and e^x

  31. Extreme Derivative Word Problem (advanced)

  32. Implicit Differentiation

  33. Implicit Differentiation (part 2)

  34. More implicit differentiation

  35. More chain rule and implicit differentiation intuition

  36. Trig Implicit Differentiation Example

  37. Calculus: Derivative of x^(x^x)

  38. Introduction to L'Hopital's Rule

  39. L'Hopital's Rule Example 1

  40. L'Hopital's Rule Example 2

  41. L'Hopital's Rule Example 3

  42. Maxima Minima Slope Intuition

  43. Inflection Points and Concavity Intuition

  44. Monotonicity Theorem

  45. Calculus: Maximum and minimum values on an interval

  46. Calculus: Graphing Using Derivatives

  47. Calculus Graphing with Derivatives Example

  48. Graphing with Calculus

  49. Optimization with Calculus 1

  50. Optimization with Calculus 2

  51. Optimization with Calculus 3

  52. Optimization Example 4

  53. Introduction to rate-of-change problems

  54. Equation of a tangent line

  55. Rates-of-change (part 2)

  56. Ladder rate-of-change problem

  57. Mean Value Theorem

  58. The Indefinite Integral or Anti-derivative

  59. Indefinite integrals (part II)

  60. Indefinite Integration (part III)

  61. Indefinite Integration (part IV)

  62. Indefinite Integration (part V)

  63. Integration by Parts (part 6 of Indefinite Integration)

  64. Indefinite Integration (part 7)

  65. Another u-subsitution example

  66. Introduction to definite integrals

  67. Definite integrals (part II)

  68. Definite Integrals (area under a curve) (part III)

  69. Definite Integrals (part 4)

  70. Definite Integrals (part 5)

  71. Definite integral with substitution

  72. Integrals: Trig Substitution 1

  73. Integrals: Trig Substitution 2

  74. Integrals: Trig Substitution 3 (long problem)

  75. Periodic Definite Integral

  76. Simple Differential Equations

  77. Solid of Revolution (part 1)

  78. Solid of Revolution (part 2)

  79. Solid of Revolution (part 3)

  80. Solid of Revolution (part 4)

  81. Solid of Revolution (part 5)

  82. Solid of Revolution (part 6)

  83. Solid of Revolution (part 7)

  84. Solid of Revolution (part 8)

  85. Sequences and Series (part 1)

  86. Sequences and series (part 2)

  87. Maclauren and Taylor Series Intuition

  88. Cosine Taylor Series at 0 (Maclaurin)

  89. Sine Taylor Series at 0 (Maclaurin)

  90. Taylor Series at 0 (Maclaurin) for e to the x

  91. Euler's Formula and Euler's Identity

  92. Visualizing Taylor Series Approximations

  93. Generalized Taylor Series Approximation

  94. Visualizing Taylor Series for e^x

  95. Polynomial approximation of functions (part 1)

  96. Polynomial approximation of functions (part 2)

  97. Approximating functions with polynomials (part 3)

  98. Polynomial approximation of functions (part 4)

  99. Polynomial approximations of functions (part 5)

  100. Polynomial approximation of functions (part 6)

  101. Polynomial approximation of functions (part 7)

  102. Taylor Polynomials

  103. Exponential Growth

  104. AP Calculus BC Exams: 2008 1 a

  105. AP Calculus BC Exams: 2008 1 b&c

  106. AP Calculus BC Exams: 2008 1 c&d

  107. AP Calculus BC Exams: 2008 1 d

  108. Calculus BC 2008 2 a

  109. Calculus BC 2008 2 b &c

  110. Calculus BC 2008 2d

  111. Partial Derivatives

  112. Partial Derivatives 2

  113. Gradient 1

  114. Gradient of a scalar field

  115. Divergence 1

  116. Divergence 2

  117. Divergence 3

  118. Curl 1

  119. Curl 2

  120. Curl 3

  121. Double Integral 1

  122. Double Integrals 2

  123. Double Integrals 3

  124. Double Integrals 4

  125. Double Integrals 5

  126. Double Integrals 6

  127. Triple Integrals 1

  128. Triple Integrals 2

  129. Triple Integrals 3

  130. (2^ln x)/x Antiderivative Example

  131. Introduction to the Line Integral

  132. Line Integral Example 1

  133. Line Integral Example 2 (part 1)

  134. Line Integral Example 2 (part 2)

  135. Position Vector Valued Functions

  136. Derivative of a position vector valued function

  137. Differential of a vector valued function

  138. Vector valued function derivative example

  139. Line Integrals and Vector Fields

  140. Using a line integral to find the work done by a vector field example

  141. Parametrization of a Reverse Path

  142. Scalar Field Line Integral Independent of Path Direction

  143. Vector Field Line Integrals Dependent on Path Direction

  144. Path Independence for Line Integrals

  145. Closed Curve Line Integrals of Conservative Vector Fields

  146. Example of Closed Line Integral of Conservative Field

  147. Second Example of Line Integral of Conservative Vector Field

  148. Green's Theorem Proof Part 1

  149. Green's Theorem Proof (part 2)

  150. Green's Theorem Example 1

  151. Green's Theorem Example 2

  152. Introduction to Parametrizing a Surface with Two Parameters

  153. Determining a Position Vector-Valued Function for a Parametrization of Two Parameters

  154. Partial Derivatives of Vector-Valued Functions

  155. Introduction to the Surface Integral

  156. Example of calculating a surface integral part 1

  157. Example of calculating a surface integral part 2

  158. Example of calculating a surface integral part 3

  159. 2011 Calculus AB Free Response #1a

  160. 2011 Calculus AB Free Response #1 parts b c d

  161. 2011 Calculus AB Free Response #2 (a & b)

  162. 2011 Calculus AB Free Response #2 (c & d)

  163. 2011 Calculus AB Free Response #3 (a & b)

  164. 2011 Calculus AB Free Response #3 (c)

  165. 2011 Calculus AB Free Response #4a

  166. 2011 Calculus AB Free Response #4b

  167. 2011 Calculus AB Free Response #4c

  168. 2011 Calculus AB Free Response #4d

  169. 2011 Calculus AB Free Response #5a

  170. 2011 Calculus AB Free Response #5b

  171. 2011 Calculus AB Free Response #5c.

  172. 2011 Calculus AB Free Response #6a

  173. 2011 Calculus AB Free Response #6b

  174. 2011 Calculus AB Free Response #6c

  175. 2011 Calculus BC Free Response #1a

  176. 2011 Calculus BC Free Response #1 (b & c)

  177. 2011 Calculus BC Free Response #1d

  178. 2011 Calculus BC Free Response #3a

  179. 2011 Calculus BC Free Response #3 (b & c)

  180. 2011 Calculus BC Free Response #6a

  181. 2011 Calculus BC Free Response #6b

  182. 2011 Calculus BC Free Response #6c

  183. Error or Remainder of a Taylor Polynomial Approximation

  184. Proof: Bounding the Error or Remainder of a Taylor Polynomial Approximation

  185. 2011 Calculus BC Free Response #6d

  186. Constructing a unit normal vector to a curve

  187. 2 D Divergence Theorem

  188. Conceptual clarification for 2-D Divergence Theorem

  189. Surface Integral Example Part 2 - Calculating the Surface Differential

  190. Surface Integral Example Part 1 - Parameterizing the Unit Sphere

  191. Surface Integral Example Part 3 - The Home Stretch

  192. Surface Integral Ex2 part 1 - Parameterizing the Surface

  193. Surface Integral Ex2 part 2 - Evaluating Integral

  194. Surface Integral Ex3 part 1 - Parameterizing the Outside Surface

  195. Surface Integral Ex3 part 2 - Evaluating the Outside Surface

  196. Surface Integral Ex3 part 3 - Top surface

  197. Surface Integral Ex3 part 4 - Home Stretch

  198. Conceputal Understanding of Flux in Three Dimensions

  199. Constructing a unit normal vector to a surface