Upload

Loading icon Loading...

This video is unavailable.

#21 Biochemistry Glycolysis Lecture for Kevin Ahern's BB 450/550

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to like Kevin Ahern's video.

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to dislike Kevin Ahern's video.

Sign in to YouTube

Sign in with your Google Account (YouTube, Google+, Gmail, Orkut, Picasa, or Chrome) to add Kevin Ahern's video to your playlist.

Uploaded on Nov 14, 2011

1. Contact me at kgahern@davincipress.com / Friend me on Facebook (kevin.g.ahern)
2. Download my free biochemistry book at http://biochem.science.oregonstate.ed...
3. Take my free iTunes U course at https://itunes.apple.com/us/course/bi...
4. Check out my free book for pre-meds at http://biochem.science.oregonstate.ed...
5. Course video channel at http://www.youtube.com/user/oharow/vi...
6. Check out all of my free workshops at http://www.youtube.com/playlist?list=...
7. Check out my Metabolic Melodies at http://www.davincipress.com/metabmelo...
8. Take my courses for credit (wherever you live) via OSU's ecampus. For details, see http://ecampus.oregonstate.edu/soc/ec...
9. Course materials at http://oregonstate.edu/instruct/bb450

1. Electron carriers include NAD+/NAHD, FAD/FADH2, and NADP+/NADPH. The first two are used to accept electrons in redox reactions. NADPH is used mostly in anabolic reactions.

2. Metabolic carrier molecules, such as acetyl-CoA and UDP-glucose, are ACTIVATED. Activated carriers contain a high energy between themselves (such as CoA) and the molecule they are carrying (acetyl group). The high energy of their bond is used to make possible the reaction where the molecule being carried is donated to a larger molecule.

2. There are six classes of reactions catalyzed by enzymes. They include Oxidation-Reduction Reactions (electrons gained/lost), Ligation Reactions (two molecules put together), Isomerization Reactions (intramolecular rearrangements), Group Transfer Reactions (movement of a part of one molecule to another molecule), Hydrolytic Reactions (breakdown reactions using water), and Lyases (breakdown reactions involving a double bond, but not using water to break the molecule down)

Glycolysis I Highlights

1. Glycolysis is a catabolic pathway involving oxidation and yields ATP energy. Gluconeogenesis, the synthesis of glucose, is an anabolic pathway that involves reduction and requires ATP.

2. Note that glycolysis has three phases - an energy investment phase, a molecular rearrangement phase, and an energy realization phase where ATP is made.

3. In reaction #1 of glycolysis, hexokinase catalyzes transfer of phosphate to glucose from ATP, forming G6P. Thus, this step uses ATP, which provides the energy necessary for the reaction to proceed. It is an example of an energy-coupled reaction and the Delta G zero prime is strongly negative, thanks to the ATP hydrolysis.

4. Hexokinase changes shape as it binds to glucose. This property is consistent with that of an induced fit of an enzyme in the process of catalysis.

5. Reaction #2 of glycolysis is catalyzed by phosphoglucoisomerase. In it, G6P is converted to F6P. The Delta G zero prime for the reaction is close to zero. Note than a linear intermediate is formed in the process.

6. Reaction #3 is the primary regulatory reaction of glycolysis. It is catalyzed by phosphofructokinase (PFK). Note that this reaction also requires ATP. PFK is the most important regulatory enzyme for glycolysis. The molecule made in the process, F1,6BP, is a high energy molecule and the energy in the molecule is needed in the next reaction. The reaction is another example of an energy-coupled reaction and the Delta G zero prime is strongly negative.

7. Reaction #4 is catalyzed by aldolase. It has a strongly positive Delta G zero prime. In the cell, however, the reaction is pulled by reactions ahead of it (which remove products) and pushed by reactions behind it (which increase amounts of reactants), making the Delta G favorable (negative). The products of this reaction are G3P and DHAP.

8. The energy barrier of reaction 4 is overcome by 'pushing' (increasing concentration of reactatnts) and 'pulling' (decreasing concentration of products) of the reaction.

9. Reaction #5 is catalyzed by the 'perfect' enzyme known as triose phosphate isomerase. The reason the enzyme operates so fast is to prevent accumulation of a toxic intermediate. The product of the reaction is G3P. The Delta G zero prime is close to zero, so this reaction is readily reversible. Everything after this step has two molecules of each.

10. Reaction 6 is the only oxidation in glycolysis. It is catalyzed by glyceraldehyde-3-phosphate dehyrogenase. The energy of the oxidation is used to put phosphate onto the acid produced by the oxidation. The products are NADH and 1,3 BPG. The latter has high energy (higher than ATP).

11. Reaction 7 produces 3PG and ATP, since the phosphate on 1,3BPG is transferred onto ADP. This enzyme is phosphoglycerate kinase.

12. Reaction #8 is catalyzed by phosphoglycerate mutase and it simply involves rearrangement of the 3PG into 2PG. An intermediate in the process is 2,3 BPG. The Delta G zero prime is close to zero and the direction of the reaction is driven by cellular concentrations.

  • Category

  • License

    Standard YouTube License

Loading icon Loading...

Loading icon Loading...

Loading icon Loading...

The interactive transcript could not be loaded.

Loading icon Loading...

Loading icon Loading...

Ratings have been disabled for this video.
Rating is available when the video has been rented.
This feature is not available right now. Please try again later.

Loading icon Loading...

Loading...
Working...
to add this to Watch Later

Add to