1. nanoHUB-U Fundamentals of Nanoelectronics I: M1.6 The New Ohm's Law - Where is the Heat?

  2. nanoHUB-U Fundamentals of Nanoelectronics

  3. Near-equilibrium Transport Lecture 10: Case Study - Graphene

  4. Near-equilibrium Transport Lecture 9: Phonon Transport

  5. Near-equilibrium Transport Lecture 8: Measurements

  6. Near-equilibrium Transport Lecture 7: Boltzmann Transport Equation

  7. Near-equlibrium Transport Lecture 6: An Introduction to Scattering

  8. Near-equlibrium Transport Lecture 5: Thermoelectric Effects: Mathematics

  9. Near-equlibrium Transport Lecture 4: Thermoelectric Effects: Physical Approach

  10. Near-equlibrium Transport Lecture 3: Resistance - ballistic to diffusive

  11. Near-equlibrium Transport Lecture 2: General model for transport

  12. Near-equlibrium Transport Lecture 1: Introduction

  13. Solar Cells Lecture 5: Organic Photovoltaics

  14. Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?

  15. Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Systems

  16. Solar Cells Lecture 2: Physics of Crystalline Solar Cells

  17. Solar Cells Lecture 1: Introduction to Photovoltaics

  18. Atomic Picture of Plastic Deformation in Metals: Prelab Lecture

  19. Atomic Picture of Plastic Deformation in Metals: Overview Lecture

  20. Limits of Thermal Processes and their Implications on Efficient Energy Utilization

  21. Innovations and a Sustainable Energy Future

  22. Energy Innovations in the 21st Century: Role of ARPA-E

  23. Lecture 4: Sensing Methodologies (cont), Integrated BioMEMS and Nanodevices

  24. Lecture 3: Microfluidic Transport (cont), Sensing Methodologies

  25. Lecture 2: Essentials of Microbiology, Introduction to Microfluidics

  26. Lecture 1: Introduction, Device Fabrication Methods, DNA and Proteins

  27. Tutorial 4d: Formation of Bandstructure in Finite Superlattices (Exercise Demo)

  28. Tutorial 4c: Formation of Bandstructure in Finite Superlattices (Exercise Session)

  29. Tutorial 4b: Introduction to the NEMO3D Tool

  30. Tutorial 4a: High Bias Quantum Transport in Resonant Tunneling Diodes

  31. Tutorial 3b: Materials Simulation by First-Principles Density Functional Theory II

  32. Tutorial 3a: Materials Simulation by First-Principles Density Functional Theory I

  33. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

  34. Lecture 4: Bottom-up Approach to Thermoelectricity

  35. Lecture 3: Introduction to NEGF

  36. Lecture 1B: Nanotransistors - A Bottom Up View

  37. 2010 MNTL UIUC Symposium Lecture 6 - MNTL Labs & Milton Feng Outro

  38. 2010 MNTL UIUC Symposium Lecture 5 - Device Scaling

  39. 2010 MNTL UIUC Symposium Lecture 4 - MicroElectronics

  40. 2010 MNTL UIUC Symposium Lecture 3 - Large Scale InP Photonic Integrated Circuits

  41. 2010 MNTL UIUC Symposium Lecture 2 - Optoelectronics

  42. 2010 MNTL UIUC Symposium Lecture 1 - The Metamorphosis of the Transistor into a Laser

  43. Mathematica for CUDA and OpenCL Programming

  44. Nano-EP Lecture 4: Materials and Mechanics for Bio-Integrated Electronics

  45. Nano-EP Lecture 3: Characterization and Modeling of Transport in Single Walled Carbon Nanotube Films

  46. Nano-EP Lecture 2: Spin Transistor and Beyond

  47. Nano-EP Lecture 1: Hetero-epitaxy of III-V Compounds on Silicon Substrates for Device Applications

  48. ME 597 Lecture 1: Review of Quantum Tunneling/Introduction to STM

  49. Keithley 4200-SCS Lecture 3: More KITE Setup and Features

  50. ME 597 Lecture 27: Other Emerging dAFM Techniques

  51. ME 597 Lecture 26: AFM in Liquids II

  52. ME 597 Lecture 25: AFM in Liquids I

  53. ME 597 Lecture 24: Using AFM to Measure Electrostatic Forces

  54. ME 597 Lecture 23: FM-AFM Selected Results and Achieving Atomic Resolution with AFM

  55. ME 597 Lecture 22: Frequency Modulated AFM: Experimental Details

  56. ME 597 Lecture 21: Frequency Modulated AFM

  57. Keithley 4200-SCS Lecture 12: Ultra-fast I-V for Pulsed and Transient Characterization

  58. Keithley 4200-SCS Lecture 11: 4210 CVU Instrument Module - Troubleshooting

  59. Keithley 4200-SCS Lecture 10: 4210 CVU Instrument Module - Measurement Techniques II

  60. Keithley 4200-SCS Lecture 9: 4210 CVU Instrument Module - Measurement Techniques I

  61. Keithley 4200-SCS Lecture 8: 4210 CVU Instrument Module - Overview

  62. Keithley 4200-SCS Lecture 7: KCON Utility Overview

  63. Keithley 4200-SCS: KITE Demo

  64. Keithley 4200-SCS Lecture 6: Troubleshooting

  65. Keithley 4200-SCS Lecture 5: Low Current and High Resistance Measurements

  66. Keithley 4200-SCS Lecture 4: Speed and Timing Considerations

  67. Keithley 4200-SCS Lecture 2: Basics of Keithley Interactive Test Environment (KITE)

  68. Keithley 4200-SCS Lecture 1: Introduction - System Overview - DC I-V Source Measurement

  69. ME 597 Lecture 20: Scanning Controls (VEDA Demo)

  70. ME 597 Lecture 19: VEDA - Scanning Controls

  71. ME 597 Lecture 18b: Analytical Approaches - Peak Interaction Forces

  72. ME 597 Lecture 18a: Analytical Approaches

  73. ME 597 Lecture 17: Cantilever Eigenmodes, Equivalent Point Mass Oscillator, Analytical Approaches

  74. ME 597 Lecture 16: Dynamic Approach Curves in AM-AFM (VEDA Demo)

  75. ME 597 Lecture 15: Dynamic Approach Curves

  76. ME597 Lecture 14: Introduction to dynamic AFM

  77. ME 597 Lecture 13: Virtual Environment for Dynamic AFM (VEDA)

  78. ME 597 Lecture 12: Experimental Uncertainties in Extracting Material Properties from F-Z Curves

  79. ME 597 Lecture 11: Three Important Callibrations

  80. ME 597 Lecture 10: Force Distance Curves II

  81. ME 597 Lecture 9: Force Distance Curves I

  82. ME 597 Lecture 8: Introduction to Contact Mechanics

  83. ME 597 Lecture 7: Interaction Forces III

  84. ME 597 Lecture 6: Interaction Forces II

  85. ME 597 Lecture 5: Interaction Forces I

  86. ME 597 Lecture 4: The Transition from STM to AFM

  87. ME 597 Lecture 3: Advanced Topics in STM

  88. ME 597 Lecture 2: STM Experimental Considerations

  89. ME 597 Course Overview

  90. Nanoelectronic Modeling Lecture 06: nanoHUB.org - Rappture Toolkit

  91. Nanoelectronic Modeling Lecture 05: nanoHUB.org - Impact on Research

  92. Nanoelectronic Modeling Lecture 03: nanoHUB.org - Online Simulation and More

  93. Nanoelectronic Modeling Lecture 02: (NEMO) Motivation and Background

  94. Nanoelectronic Modeling Lecture 41: Full-Band and Atomistic Simulation of Realistic... - Part 2/2

  95. Nanoelectronic Modeling Lecture 41: Full-Band and Atomistic Simulation of Realistic... - Part 1/2

  96. Nanoelectronic Modeling Lecture 40: Performance Limitations of Graphene Nanoribbon... Part 2/2

  97. Nanoelectronic Modeling Lecture 40: Performance Limitations of Graphene Nanoribbon... Part 1/2

  98. Nanoelectronic Modeling Lecture 39: OMEN: Band-to-Band-Tunneling Transistors - Part 2/3

  99. Nanoelectronic Modeling Lecture 39: OMEN: Band-to-Band-Tunneling Transistors - Part 1/3